Classification of hearing impairments using the Auditory Profile

The relevance for technical rehabilitation

Workshop Hearing Screening and Technology, Brussels 28 January 2009

Information Society

inclusion

HearCom

Acknowledgements

Participating centers and people:

DE-HZO Matthias Vormann **Birger Kollmeier NL-VUMC Tammo Houtgast** Johannes Lyzenga **SE-LINK** Matthias Halgren **Birgitta Larsby Sheetal Athalye UK-ISVR** Mark Lutman NL-AMC Thamar van Esch Wouter Dreschler

MMOM

More than audibility ...

In diagnostics:

- Other important aspects (e.g. spectral and temporal resolution, recruitment)
- Shown and measured in many research settings
- BUT:
 - No standardized methods
 - No applications in clinical field
 - \rightarrow No data from large populations

Workshop Hearing Screening and Technology, Brussels 28 January 2009

inclusion

More than audibility ...

In technical rehabilitation:

- Prescription rules are mainly based on the audiogram [But the pure-tone audiogram is basically designed for medical diagnosis and not for rehabilitative audiometry]
- Advanced signal processing is usually based on average processing capability

So we need...

- Battery of tests in different domains
- Relevant for communication
- Clinically applicable
- Well-standardized across languages

<u>Goal:</u> Identify individual hearing capabilities → Selection of specific signal processing for individuals

Workshop Hearing Screening and Technology, Brussels 28 January 2009

- inclusion Be part of it!

Therefore

- The Auditory Profile (AP) should become:
 - "Fingerprint of the ear"
- Characterize individual auditory deficits:
 - Detailed diagnosis in a standardized way
 - Hearing aid selection and fitting
 - Future: targets for aided performance

	Component				
	1	2	3	4	
F3000	.803				
slope audio	.787				
Т3000	.679				
MCL3000		.913			
MCL500		.841			
PTAh		.676		.593	
T500			.794		
F500			.766		
SL500				.713	
SL3000				.763	
SRTfluct			.515	.488	

Total explained variance: 73 %

	Component			
	1	2	3	4
F3000	.803			
slope audio	.787			
Т3000	.679			
MCL3000		.913		
MCL500		.841		
PTAh		.676		.593
T500			.794	
F500			.766	
SL500				.713
SL3000	\land			.763
SRTfluct			.515	.488

Factor 1: Highfrequency processing

Total explained variance: 73 %

	Component				
	1	2	3	4	
F3000	.803				
slope audio	.787				
Т3000	.679				
MCL3000		.913			
MCL500		.841			
PTAh		.676		.593	
T500			.794		
F500			.766		
SL500				.713	
SL3000				.763	
SRTfluct			.515	.488	

Factor 1: Highfrequency processing Factor 2: Audibility

Total explained variance: 73 %

	Component			
	1	2	3	4
F3000	.803			
slope audio	.787			\backslash
T3000	.679			
MCL3000		.913		
MCL500		.841		
PTAh		.676		.593
T500			.794	
F500			.766	
SL500				.713
SL3000				.763
SRTfluct			.515	.488

Factor 1: Highfrequency processing Factor 2: Audibility Factor 3: Lowfrequency processing

Total explained variance: 73 %

Det.(corr.matrix): 0.009 KMO (sampling adequacy): 0.587

WBarthettesrtesterseing@n000hnology, Brussels 28 January 2009

	Component 🥿			
	1	2	3	4
F3000	.803			
slope audio	.787			
T3000	.679			
MCL3000		.913		
MCL500		.841		
PTAh		.676		.593
T500			.794	
F500			.766	
SL500				.713
SL3000				.763
SRTfluct			.515	.488

Factor 1: Highfrequency processing Factor 2: Audibility Factor 3: Lowfrequency processing Factor 4: Recruitment

Total explained variance: 73 %

	Component				
	1	2	3	4	Factor 1: High-
F3000	.803				frequency processing
slope audio	.787				Fostor 2. Audibility
Т3000	.679				Factor 2: AudiDinty
MCL3000		.913			Factor 3: Low-
MCL500		.841			frequency processing
PTAh		.676		.593	Factor 4. Docruitmon
T500			.794		racio 4. Reciulinen
F500			.766		
SL500				.713	SRT: related to
SL3000				763	recruitment and low
SRTfluct		(.515	.488	
Total explained variance: 73 %					

-inclusion Be part of it!

Future Auditory Profile

Goal: broad clinical application

- → Detailed knowledge about the individual problems in hearing
- → Population data about different aspects of auditory deficits

Important issue:

Can the AP be used for a classification of HI that is relevant for auditory rehabilitation?

How to use the AP for the classification of HI?

- Main stream HI
 - Audibility is main problem
 - Problems increase with increasing hearing loss
- Complex cases with extra problems
 - Due to supra-threshold deficits
 - Reduced DR
 - Reduced F-resolution
 - Reduced T-resolution
 - Due to reduced binaural integration
 - Due to reduced cognitive functions

Hierarchical strategy in three levels

1. Assess the complexity

- Pure-tone audiogram
- SRT in quiet
- SRT in fluctuating noise
- GP speech and localization

2. Analysis phase

Test scenarios, e.g. for:

- Problems with recognition
- Speech perception in noise is poorer than expected
- Problems with localization

3. Detailed diagnosis

Test batteries on:

- Central tests / binaural cooperation
- Battery of cognition tests
- Testing for dead regions

Potential applications of the AP in technical rehabilitation

- Selection of hearing aids
 - Choice of relevant hearing aid features based on a categorization of the complexity of the HI
- Fitting of hearing aids
 - Settings and fine-tuning of SP-parameters
- Evaluation of hearing aids
 - Clinically applicable test procedures
 - Derived from the AP
 - To be compared with AP results

Imagine ... that we had more knowledge

- ... about the *prevalence* of the different types of auditory impairments *in a population*
- → This would largely stimulate the development of signal processing techniques to compensate for these impairments
- ... about the *different types* of auditory deficits in an individual
- → This would largely stimulate the selection of specific signal processing for this individual, and may support individual fitting and rehabilitation techniques to compensate for the deficits

WP2-T4

bridge between WP2 (AP) and WP7 (SP)

Perceptual evaluation of

- Single-channel noise suppression: SE-KTH, DE-RUB
- Blind source separation: DE-UEN
- Adaptive beamforming: BE-LEU
- Dereverberation: DE-UOL
- Extra measurements of the AP in two centers: AMC and HZO: n=55 subjects
 - SRT in noise
 - Listening Effort Scaling @ SNR 0 / +5 / +10 dB
 - Preference ratings

Results of 5 HEARCOM strategies for Noise Reduction

Relationship SRT-results with AP parameters

- Overall performance is related to most AP parameters.
- Benefits from the different NR-algorithms show characteristic dependencies
 - The benefits in SRT are significantly related to a number of AP parameters
 - The benefit in Listening Effort from "Beam" is related to different AP-parameters
 - Relative preferences for SP-algorithms show characteristic dependencies

Where did the AP arrived at?

- Unique set of standardized and validated tests
 - Tests that go beyond the traditional audiogram:
 - f/t resolution / loudness perception / binaural cooperation / cognition
 - Equivalent speech tests across languages
- All tests are implemented in one platform (OMA)
- Appealing for the *advanced audiology professional*
 - Advanced diagnosis of the problems in individual persons
- Appealing for the <u>EU hearing-aid industry</u>
 - Characterizing specific subgroups with special needs
- Appealing for the *EU research community*

inclusion

- Attractive tests for cooperation \rightarrow an increasing reference database
- Excellent tool for large-scale (international) population studies

Dissemination

- Expansion of the number of countries where HEARCOM procedures can be introduced
- Publication of the results
 - In papers and at the website
- Active contribution to conferences
 - ICRA / EFAS / ISAAR / ASA / Euronoise / IHCON
- Network of professionals as a HEARCOM community (AP as best practice)
 - Through EFAS or more directly
 - Organize own workshops for interested parties
- Package the AP tests with advanced audiometer equipment (OMA / other manufacturers)

→ Acceptance of the AP in the clinical field
→ Broadly used instrument in research studies

Workshop Hearing Screening and Technology, Brussels 28 January 2009

inclusion

HearCom

Thanks for your attention

